
I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Introduction to GPUs and to the Linux Graphics
Stack

Martin Peres
CC By-SA 3.0

Nouveau developer
Ph.D. student at LaBRI

November 26, 2012

1 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

2 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

General overview of a modern GPU’s functions

Display content on a screen

Accelerate 2D operations

Accelerate 3D operations

Decode videos

Accelerate scientific calculations

3 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

CPU

Flash ROM
(BIOS)

Super I/O
Serial Port

Parallel Port
Floppy Disk

Keyboard
Mouse

Northbridge 

(memory
controller hub)

Southbridge
(I/O controller

hub)
IDE

SATA
USB

Ethernet
Audio Codec

CMOS Memory

Onboard
graphics
controller

Clock
GeneratorGraphics

card slot

High-speed
graphics bus
(AGP or PCI

Express)

Chipset

Front-side
bus

Memory
bus

Memory Slots

PCI
Bus

PCI Slots

LPC
Bus

Internal
Bus 

PCI
Bus

Cables and
ports leading

off-board

4 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

Hardware architecture

GPU: Where all the calculations are made

VRAM: Stores the textures or general purpose data

Video Outputs: Connects to the screen(s)

Power stage: Lower the voltage, regulate current

Host communication bus: Communication with the CPU

5 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Driving screens

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

6 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Driving screens

crtc0

VGA Encoder

Display Port Encoder

DVI Encoder

crtc1

VGA Conn

DP Conn

DVI Conn

Driving screens : the big picture

Framebuffer: The image to be displayed on the screen(VRAM)

CRTC: Streams the framebuffer following the screen’s timings

Encoder: Convert the CRTC’s output to the right PHY signal

Connector: The actual connector where the screen is plugged

7 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Driving screens

Screen connectors

VGA: Video, introduced in 1987 by IBM

DVI: Video, introduced in 1999 by DDWG

DP: Video & Audio, introduced in 2006 by VESA

HDMI: Video & Audio, introduced in 1999 by HDMI Founders

8 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Driving screens

HBlank
Line 0

Line 1

Line Y - 1

Line Y

CRTC Scanout

VBlank

HBlank

HBlank

HBlank

Line Y - 2

Driving screens : the CRT Controller

Streams the framebuffer following the screen’s timings

After each line, the CRTC must wait for the CRT to go back
to the beginning of the next line (Horizontal Blank)

After each frame, the CRTC must wait for the CRT to go
back to the first line (Vertical Blank)

Timings are met by programming the CRTC clock using PLLs

9 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Driving screens

CRTC Screen
EDID signal

Video

EDID
EEPROM

VGA cable

Configuring the CRTC : Extended display identification data

Stored in each connector of the screen (small EEPROM)

Is usually accessed via a dedicated I2C line in the connector

Holds the modes supported by the screen connector

Processed by the host driver and exposed with the tool xrandr

(see xrandr --verbose)

10 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Driving screens

Example: Some display standards

1981 : Monochrome Display Adapter (MDA)

text-only
monochrome
720 * 350 px or 80*25 characters (50Hz)

1981 : Color Graphics Adapter (CGA)

text & graphics
4 bits (16 colours)
320 * 200 px (60 Hz)

1987 : Video Graphics Array (VGA)

text & graphics
4 bits (16 colours) or 8 bits (256 colours)
320*200px or 640*480px (<= 70 Hz)

11 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Host < − > GPU communication

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

12 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Host < − > GPU communication

Modern host communication busses

1993 : Peripheral Component Interconnect (PCI)

32 bit & 33.33 MHz
Maximum transfer rate: 133 MB/s

1996 : Accelerated Graphics Port (AGP)

32 bit & 66.66 MHz
Maximum transfer rate: 266 to 2133 MB/s (1x to 8x)

2004 : PCI Express (PCIe)

1 lane: 0.25 − > 2 GB/s (PCIe v1.x − > 4.0)
up to 32 lanes (up to 64 GB/s)
Improve device-to-device communication (no arbitration)

Features

Several generic configuration address spaces (BAR)

Interruption RQuest (IRQ)

13 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Host < − > GPU communication

Programming the GPU : Register access via MMIO

A GPU’s configuration is mostly stored in registers;

A register is usually identified by an address in a BAR;

We can then access them like memory;

This is called Memory-Mapped Input/Output (MMIO).

Disk RAM

Another
process's
memory

Example of a CPU process's virtual memory space

0 0xffffffff

PCI-01:00 BAR0

0 0xffffff

Unused Unused

GPU 0, BAR 0
Register Space

0 0xffffffff

(swap)

Logical address

Physical address

14 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Host < − > GPU communication

Location of the address/memory:

CPU GPU GTT/GART(references RAM)RAM

GTT/GART

GPU virtual address (VRAM + GART)

Providing the GPU with easy access to the Host RAM

Physical address

Device

B
A

R
 0

B
A

R
 1

..
. GART

Process virtual address space (VM)

GART as a CPU-GPU buffer-sharing mechanism

A program can export buffers to the GPU:

Without actually copying data (faster!);

Allow the GPU to read textures & data from the program;

15 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

16 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

The GPU needs the host for:

Setting the screen mode/resolution (mode setting);

Configuring the engines and communication busses;

Handling power management;

Thermal management (fan, react to overheating/power);
Change the GPU’s frequencies/voltage to save power;

Processing data:

Allocate processing contexts (GPU VM + context ID);
Upload textures or scientific data;
Send commands to be executed in a context.

17 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

Overview of the components of a graphics stack

A GPU with its screen;

One or several input devices (mouse, keyboard);

A windowing system (such as the X-Server and Wayland);

Accelerated-rendering protocols (such as OpenGL);

Graphical applications (such as Firefox or a 3D game).

Components of the Linux Graphics stack

Direct Rendering Manager (DRM) : exports GPU primitives;

X-Server/Wayland : provide a windowing system;

Mesa : provides advanced acceleration APIs;

18 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

General overview

Kernel space

User space

Xorg

Applications

Hardware

drm

radeon intelnouveau

GPU

xlib

x-server

network

libdrm

ddx

mesa

CPU

Rasterizer

If UCS*

Qt gtk nexuiz

19 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

DRM and libdrm

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

20 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

DRM and libdrm

Direct Rendering Manager

Inits and configures the GPU;

Performs Kernel Mode Setting (KMS);

Exports privileged GPU primitives:

Create context + VM allocation;
Command submission;
VRAM memory management: GEM & TTM;
Buffer-sharing: GEM & DMA-Buf;

Implementation is driver-dependent.

libDRM

Wraps the DRM interface into a usable API;

Is meant to be only used by Mesa & the DDX;

21 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Mesa

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

22 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Mesa

Mesa

Provides advanced acceleration APIs:

3D acceleration: OpenGL / Direct3D
Video acceleration: XVMC, VAAPI, VDPAU

Mostly device-dependent (requires many drivers);

Divided between mesa classics and gallium 3D;

Mesa classics

Old code-base, mostly used by drivers for old cards;

No code sharing between drivers, provide only OpenGL;

Gallium 3D

Built for code-sharing between drivers (State Trackers);

Pipe drivers follow the instructions from the Gallium interface;

Pipe drivers are the device-dependent part of Gallium3D;

23 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Mesa

Applications

Mesa

State Trackers

pipe drivers

Mesa Classics

Weston

egl

x-server

xorg

mplayer

VDPAU

xonotic

libgl

Qt

OpenGL intel radeon nouveau_vieux swrast

Gallium

softpipe llvmpipe r600gr300gnvc0nv50 ...nv30

CPU

LLVM GPU
(through libdrm)

24 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

X11

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

25 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

X11

X11 and the X-Server

X11 is a remote rendering API that is 25 years old;

Exports drawing primitives like filled circles, lines;

Is extensible via extensions: eg. DRI2, composite, AIGLX.

The X-Server

Implements the X11 protocol and provides extensions;

Needs a window manager to display windows (like compiz);

Holds 2D acceleration drivers (DDX): nouveau, radeon, intel;

Logs in /var/log/Xorg.0.log (check them for errors).

The X Resize, Rotate and Reflect Extension (XRandR)

Common X API to configure screens and multi head;

Implemented by the open and proprietary drivers;

26 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

X11

Reaction to an input event

1: The kernel driver evdev sends an event to the X-Server;

2: The X-Server forwards it to the window with the focus;

3: The client updates its window and tell the X-Server;

4 & 5: The X-Server lets the compositor update its view;

6: The X-Server sends the new buffer to the GPU.

27 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Wayland

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

28 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Wayland

Wayland

Protocol started in 2008 by Kristian Høgsberg;

Aims to address some of X11 shortcomings;

Wayland manages:

Input events: Send input events to the right application;
Copy/Paste & Drag’n’Drop;
Window buffer sharing (the image representing the window);

Wayland Compositor

Implements the server side of the Wayland protocol;

Talks to Wayland clients and to the driver for compositing;

The reference implementation is called Weston.

29 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Wayland

Reaction to an input event

1: The kernel driver evdev sends an input event to “Weston”;

2: “Weston” forwards the event to the right Wayland client;

3: The client updates its window and send it to “Weston”;

4: Weston updates its view and send it to the GPU.

30 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

X11 vs Wayland

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

31 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

X11 vs Wayland

X11 vs Wayland

Rendering protocol vs compositing API:

X11 provides old primitives to get 2D acceleration (such as
plain circle, rectangle, ...);
Wayland let applications render their buffers how they want;

Complex & heavy-weight vs minimal & efficient:

X11 is full of old and useless functions that are hard to
implement;
Wayland is minimal and only cares about efficient buffer
sharing;

Cannot realistically be made secure vs secureable protocol.

32 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

X11 vs Wayland

X11 : Security

X doesn’t care about security and cannot be fixed:

Confidentiality: X applications can spy other applications;
Integrity: X applications can modify other apps’ buffers;
Availability: X applications can grab input and be fullscreen.

An X app can get hold of your credentials or bank accounts!

An X app can make you believe you are using SSL in Firefox!

Wayland : Security

Wayland is secure if using a secure buffer-sharing mechanism;

See https://lwn.net/Articles/517375/.

33 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Attributions

Outline

1 I - Hardware : Anatomy of a GPU
General overview
Driving screens
Host < − > GPU communication

2 II - Host : The Linux graphics stack
General overview
DRM and libdrm
Mesa
X11
Wayland
X11 vs Wayland

3 Attributions
Attributions

34 / 36



I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Attributions

Attributions : Anatomy of a GPU

Moxfyre: https://en.wikipedia.org/wiki/File:

Motherboard_diagram.svg

Boffy b: https://en.wikipedia.org/wiki/File:

IBM_PC_5150.jpg

Katsuki: https://fr.wikipedia.org/wiki/Fichier:

VGA_plug.jpg

Evan-Amos: https://fr.wikipedia.org/wiki/Fichier:

Dvi-cable.jpg

Evan-Amos: https://en.wikipedia.org/wiki/File:

HDMI-Connector.jpg

Andreas -horn- Hornig: https:

//en.wikipedia.org/wiki/File:Refresh_scan.jpg

Own work: https://en.wikipedia.org/wiki/File:

Virtual_memory.svg

35 / 36

https://en.wikipedia.org/wiki/File:Motherboard_diagram.svg
https://en.wikipedia.org/wiki/File:Motherboard_diagram.svg
https://en.wikipedia.org/wiki/File:IBM_PC_5150.jpg
https://en.wikipedia.org/wiki/File:IBM_PC_5150.jpg
https://fr.wikipedia.org/wiki/Fichier:VGA_plug.jpg
https://fr.wikipedia.org/wiki/Fichier:VGA_plug.jpg
https://fr.wikipedia.org/wiki/Fichier:Dvi-cable.jpg
https://fr.wikipedia.org/wiki/Fichier:Dvi-cable.jpg
https://en.wikipedia.org/wiki/File:HDMI-Connector.jpg
https://en.wikipedia.org/wiki/File:HDMI-Connector.jpg
https://en.wikipedia.org/wiki/File:Refresh_scan.jpg
https://en.wikipedia.org/wiki/File:Refresh_scan.jpg
https://en.wikipedia.org/wiki/File:Virtual_memory.svg
https://en.wikipedia.org/wiki/File:Virtual_memory.svg


I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions

Attributions

Attributions : Host : The Linux graphics stack

X.org community: X.org schematic

Kristian Høgsberg: http://wayland.freedesktop.org/

36 / 36

http://wayland.freedesktop.org/

	I - Hardware : Anatomy of a GPU
	General overview
	Driving screens
	Host <-> GPU communication

	II - Host : The Linux graphics stack
	General overview
	DRM and libdrm
	Mesa
	X11
	Wayland
	X11 vs Wayland

	Attributions
	Attributions


