

GCC Toulibre 20091216

 Thanks to Toulibre
 http://toulibre.org/
 Laurent GUERBY
 http://guerby.org/

GCC

 GNU Compiler Collection
 Both Native and Cross compiler
 Multi languages
 Multi platform for host and target
 Free Software with FSF owning copyright
 http://gcc.gnu.org/

Multi Languages / in tree

 C (gcc)
 C++ (g++)
 Java (gcj)
 Ada (GNAT)
 Objective-C (gobjc)
 Objective-C++ (gobjc++)
 Fortran (gfortran)

Multi Languages / out of tree

 Modula-2
 Modula-3
 Pascal (gpc)
 PL/I
 D (gdc)
 Mercury
 VHDL (ghdl)

Multi Targets / in tree

 gcc-4.5/gcc/config subdirectories :
 alpha arc arm avr bfin cris crx fr30 frv h8300

i386 ia64 iq2000 lm32 m32c m32r m68hc11
m68k mcore mep mips mmix mn10300 moxie
pa pdp11 picochip rs6000 rx s390 score sh
soft-fp sparc spu stormy16 v850 vax vms
xtensa

Multi Targets / out of tree

 Wikipedia GNU_Compiler_Collection
 Lists 14 targets like PDP-10 or Z8000

Easy to build

 At least for native
 $ tar xfj gcc-4.4.2.tar.bz2
 $ mkdir build && cd build
 $../gcc-4.4.2/configure –prefix=/opt/gcc
 $ make bootstrap && make install
 $ make -k check

Fast to build

 Depending on host
 About 15 minutes on 2x4 core x86_64
 About 7 hours on ARM Cortex A8 @ 800 Mhz
 Works with about 512 MB of RAM
 (depending on target)
 Warning: more internal checks enabled in devel

version so slower to compile

Bootstrap

 Compiler is written in a programming language
and compiles to machine code

 So a compiler written in a given language
should be able to compile itself! => ”bootstrap”

 System compiler used to compile ”stage1”
 Which is then used to compile itself as ”stage2”
 Then again for ”stage3” and result should be

identical to ”stage2”

Available precompiled

 On most distributions 4.3 or now 4.4
 $ apt-get build-dep gcc
 Also on windows Cygwin or Mingw

Building a cross compiler

 More complicated because GCC, GNU libc and
Linux kernel are linked and depend on each
other for headers and constants

 Plus you might need out of tree patches
 Better to rely on precompiled toolchain like gcc-

avr
 Or tools like Crosstool-ng

Project History

 1985 Richard Stallman starts GCC as GNU C
Compiler

 1991 GCC 1.x => GCC 2.x
 1997 EGCS fork
 1999 EGCS becomes official GCC 2.95 with

GCC Steering Committee
 2001 GCC 3.x
 2005 GCC 4.x then from 6 month to one year

release

Contributors

 YEAR == CHANGELOG == EMAIL
 1998 == 1685 == 107
 1999 == 2629 == 196
 2000 == 5588 == 326
 2001 == 6356 == 355
 2002 == 7259 == 371
 2003 == 10440 == 443
 2004 == 12857 == 440

Contributors 2

 2005 == 11657 == 407
 2006 == 9221 == 356
 2007 == 8611 == 366
 2008 == 7789 == 357
 2009 == 9028 == 341
 Based on quick ChangeLog parsing

Paid to work on GCC

 Red Hat, Novell, ...
 AdaCore, CodeSourcery, ...
 IBM, AMD, Intel, ST Microelectronics, ...
 Google
 … 15 on C++ support
 … 15 on GCC infrastructure
 Academia like INRIA Saclay

Fairly Big Project

 gcc-4.5-20091210/gcc excluding testsuite
 SLOCCOUNT
 Totals grouped by language (dominant

language first):
 ansic: 1067922 (67.18%)
 ada: 485301 (30.53%)
 asm: 30379 (1.91%)

More Statistics

 31006 == 108 == asm
 170569 == 62 == texi
 189382 == 999 == ads
 230459 == 714 == h
 300237 == 229 == md
 707707 == 871 == adb
 1365750 == 772 == c
 3033097 total identified

GCC Options

 -O0 => no optimization, different from other
compilers

 -O1 => optimize but minimize compile time
 -O2 => more costly optimizations
 -O3 => really costly optimizations like auto

inlining and vectorizer
 -Os => optimize for code size

GCC Options 2

 $ gcc -Q --help=optimizers -O1
 The following options control optimizations:
 -falign-jumps [disabled]
 -falign-labels [disabled]
 -falign-loops [enabled]
 …
 ~140 for 4.3, ~160 for 4.4, ~180 for 4.5

GCC Options 3

 $ gcc -Q --target-help
 Target specific options:
 -m128bit-long-double sizeof(long double) is 16
 -m32 Generate 32bit i386 code
 -m3dnow Support 3DNow! built-in functions
 -m64 Generate 64bit x86-64 code

GCC Options 4

 -march=... => selects an instruction set
 Resulting executable might not work
 -mtune=... => within the instruction set, optimize

for a specific target (atom,core2,opteron, …)
 =native => autodetect current processor

How to find interesting options

 http://www.spec.org
 Look at SPECint and SPECfp detailed results
 Option used for ”peak” mode is documented
 Or use automatic tool like Acovea
 http://www.coyotegulch.com/products/acovea/

http://www.spec.org/
http://www.coyotegulch.com/products/acovea/

Builtins

 GCC specific, but some other compilers provide
them. Interesting because target independant.

 Example:

int __builtin_ffs (unsigned int x)

Returns one plus the index of the least significant
1-bit of x, or if x is zero, returns zero.
 Target dependant inline assembly:
 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

How does GCC work?

 $ ls -l /usr/bin/gcc-4.1
 -rwxr-xr-x 1 root root 205952 2006-12-11

00:12 /usr/bin/gcc
 => a bit small
 The ”gcc” binary is just a ”driver”
 It will invoke various programs depending on

command line

The real compilers

 5.3M /usr/lib/gcc/x86_64-linux-gnu/4.1.2/cc1
 5.8M/usr/lib/gcc/x86_64-linux-gnu/4.1.2/cc1plus
 7.7M /usr/lib/gcc/x86_64-linux-gnu/4.1.2/gnat1
 5.2M /usr/lib/gcc/x86_64-linux-gnu/4.1.2/jc1
 So gcc => xx1 => as or ld
 See: gcc -v myfile.c

Binutils

 GCC is just a text to text file converter
 Binutils does the work to get to machine code

and executable
 $ gcc -S file.c
 Will generate file.s => assembly

GCC Organization

 Front-end : one per programming language
 Lexer, parser, semantic analysis for the

programming language
 Translates to GENERIC intermediate

representation
 Which is then lowered to GIMPLE

Middle and Back End

 Middle End : manipulate GIMPLE
 For target independant and then target

dependant transformations and optimizations
 Back End : generate target assembly using

target machine description
 RTL Register Transfer Language
 Hundreds of ”passes” when optimizing

Machine Description

 Pattern matching engine
 Describes what a machine instruction does
 Text file with fragment of C code, eg:

gcc/config/i386/i386.md
 Quality of the description will impact quality of

the generated code for the target
 Done once per target and you get all languages

Moxie

 http://moxielogic.org/blog/
 Virtual ISA design for simplicity
 Contributed to the whole GNU toolchain
 Binutils, GCC, qemu, Linux so you can run it!
 gcc/config/moxie/*.md is 560 lines
 gcc/config/moxie/* is less than 2000 lines

http://moxielogic.org/blog/

Intermediate Forms

int f(int x, int y) {

 int tmp;

 tmp=x;

 if (x>0) tmp=-x;

 return tmp+y;

}

$ gcc -S -O3 -fdump-tree-all t.c

Intermediate Forms 2

 Generates more than 100 files!
 t.c.003t.original

f (int x, int y)

{

 int D.2705;

 int tmp;

 tmp = x;

 if (x > 0) goto <D.2703>; else goto <D.2704>;

 <D.2703>:

 tmp = -x;

 <D.2704>:

 D.2705 = tmp + y;

 return D.2705;

}

Intermediate Form 3

 t.c.024t.ssa
f (int x, int y) {

 int tmp;

 int D.2705;

<bb 2>: tmp_3 = x_2(D);

 if (x_2(D) > 0) goto <bb 3>;

 else goto <bb 4>;

<bb 3>:

 tmp_4 = -x_2(D);

<bb 4>:

 # tmp_1 = PHI <tmp_3(2), tmp_4(3)>

 D.2705_6 = tmp_1 + y_5(D);

 return D.2705_6;

}

GCC and GDB

 -g enables generation of debugging information
 More stuff in the assembly, unused for

execution. DWARF (and ELF :)
 GDB reads this stuff to map line, memory and

registers at all points of execution
 GCC can generate debug information even

when optimizing, but result might be difficult to
follow

GCC and GDB bugs

 GCC can generate wrong debug information
 GDB can misread debug information
 User Interface can miscommunicate with GDB
 So in practice help from both projects is needed

to fix bugs
 Hopefully very good cooperation

GCC bugs

 GCC is always released with hundreds of
known bugs (as are other compilers)

 Worst bug kinds (bugzilla keyword)
 wrong-code
 accepts-invalid
 Easier to find when Internal Compiler Error
 ice-on-valid
 ice-on-invalid

GCC bugs 2

 wrong-debug
 missed-optimization
 rejects-valid
 memory-hog
 compile-time-hog
 assemble-failure
 build

How to report GCC bugs

 http://gcc.gnu.org/bugs
 Is a very good ressources including common

”non bugs”
 gcc -v -save-temps -O1 myfile.c
 Generates myfile.i
 Usually enough to attach it together with

platform name and compiler output
 Version working and not working helpful

http://gcc.gnu.org/bugs

GCC 4.5 New Features

 http://gcc.gnu.org/gcc-4.5/changes.html
 A new link-time optimizer has been added (-flto). When this flag is used, GCC generates a

bytecode representation of each input file and writes it to special ELF sections in each object
file. When the object files are linked together, all the function bodies are read from these ELF
sections and instantiated as if they had been part of the same translation unit. This enables
interprocedural optimizations to work across different files (and even different languages),
potentially improving the performance of the generated code. To use the link-timer optimizer,
-flto needs to be specified at compile time and during the final link. If the program does not
require any symbols to be exported, it is possible to combine -flto and -fwhopr with -fwhole-
program to allow the interprocedural optimizers to use more aggressive assumptions.

 Automatic parallelization can be enabled as part of Graphite. In addition to -ftree-parallelize-
loops=, specify -floop-parallelize-all to enable the Graphite-based optimization.

 It is now possible to extend the compiler without having to modify its source code. A new option
-fplugin=file.so tells GCC to load the shared object file.so and execute it as part of the compiler.
The internal documentation describes the details on how plugins can interact with the compiler.

 http://gcc.gnu.org/wiki/GCC_PluginAPI

http://gcc.gnu.org/gcc-4.5/changes.html

Asking and Contributing

 http://gcc.gnu.org/ has manuals
 gcc-help@gcc.gnu.org
 IRC user help => irc.freenode.org #gcc
 http://gcc.gnu.org/ml => mailing list archives
 gcc-patches@gcc.gnu.org
 gcc@gcc.gnu.org
 gcc-testresults@gcc.gnu.org
 IRC dev channel => irc.oftc.net #gcc

http://gcc.gnu.org/
mailto:gcc-help@gcc.gnu.org
http://gcc.gnu.org/ml
mailto:gcc-patches@gcc.gnu.org
mailto:gcc@gcc.gnu.org
mailto:gcc-testresults@gcc.gnu.org

Other Compilers

 Free: LLVM, Open64
 => Interesting with plugins!
 Non free: ICC (Intel), XLC (IBM), …
 Very hard to compare compilers
 Test on your own code in your own settings
 Beware of bugs and support
 If you do multi platform GCC is hard to beat

GCC Compile Farm

 http://gcc.gnu.org/wiki/CompileFarm
 Goal: provide easy access to various

architectures and build/test machines for free
software developpers. Not limited to GCC.

 FSF France sponsored
 Many institutions, individuals and companies

providing machines, hosting and help
 AMD and Genesi donated machines

Conclusion

 GCC is a big and old project
 But it's still alive and kicking!
 Supported by many companies
 Learning it is hard
 Good bug reports are contributions!
 Questions?

